Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Breast Cancer (Dove Med Press) ; 15: 51-89, 2023.
Article in English | MEDLINE | ID: covidwho-2214972

ABSTRACT

During the COVID-19 pandemic, several priority diseases were not getting sufficient attention. Whilst breast cancer is a fatal disease affecting millions worldwide, identification and management of these patients did not initially attract critical attention to minimize the impact of lockdown, post-lockdown, and other measures. Breast cancer patients' conditions may not remain stable without proper care, worsening their prognosis. Proper care includes the timely instigation of surgery, systemic therapy, and psychological support. This includes low-and middle-income countries where there are already concerns with available personnel and medicines to adequately identify and treat these patients. Consequently, there was a need to summarize the current scenario regarding managing breast cancer care during COVID-19 across all countries, including any guidelines developed. We systematically searched three scientific databases and found 76 eligible articles covering the medical strategies of high-income countries versus LMICs. Typically, diagnostic facilities in hospitals were affected at the beginning of the pandemic following the lockdown and other measures. This resulted in more advanced-stage cancers being detected at initial presentation across countries, negatively impacting patient outcomes. Other than increased telemedicine, instigating neo-adjuvant endocrine therapy more often, reducing non-essential visits, and increasing the application of neo-adjuvant chemotherapy to meet the challenges, encouragingly, there was no other significant difference among patients in high-income versus LMICs. Numerous guidelines regarding patient management evolved during the pandemic to address the challenges posed by lockdowns and other measures, which were subsequently adopted by various high-income countries and LMICs to improve patient care. The psychological impact of COVID-19 and associated lockdown measures, especially during the peak of COVID-19 waves, and the subsequent effect on the patient's mental health must also be considered in this high-priority group. We will continue to monitor the situation to provide direction in future pandemics.

2.
Life (Basel) ; 12(5)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1810009

ABSTRACT

With the progression of the COVID-19 pandemic, new technologies are being implemented for more rapid, scalable, and sensitive diagnostics. The implementation of microfluidic techniques and their amalgamation with different detection techniques has led to innovative diagnostics kits to detect SARS-CoV-2 antibodies, antigens, and nucleic acids. In this review, we explore the different microfluidic-based diagnostics kits and how their amalgamation with the various detection techniques has spearheaded their availability throughout the world. Three other online databases, PubMed, ScienceDirect, and Google Scholar, were referred for articles. One thousand one hundred sixty-four articles were determined with the search algorithm of microfluidics followed by diagnostics and SARS-CoV-2. We found that most of the materials used to produce microfluidics devices were the polymer materials such as PDMS, PMMA, and others. Centrifugal force is the most commonly used fluid manipulation technique, followed by electrochemical pumping, capillary action, and isotachophoresis. The implementation of the detection technique varied. In the case of antibody detection, spectrometer-based detection was most common, followed by fluorescence-based as well as colorimetry-based. In contrast, antigen detection implemented electrochemical-based detection followed by fluorescence-based detection, and spectrometer-based detection were most common. Finally, nucleic acid detection exclusively implements fluorescence-based detection with a few colorimetry-based detections. It has been further observed that the sensitivity and specificity of most devices varied with implementing the detection-based technique alongside the fluid manipulation technique. Most microfluidics devices are simple and incorporate the detection-based system within the device. This simplifies the deployment of such devices in a wide range of environments. They can play a significant role in increasing the rate of infection detection and facilitating better health services.

3.
Vaccines (Basel) ; 9(12)2021 Nov 24.
Article in English | MEDLINE | ID: covidwho-1542816

ABSTRACT

COVID-19 vaccines are indispensable, with the number of cases and mortality still rising, and currently no medicines are routinely available for reducing morbidity and mortality, apart from dexamethasone, although others are being trialed and launched. To date, only a limited number of vaccines have been given emergency use authorization by the US Food and Drug Administration and the European Medicines Agency. There is a need to systematically review the existing vaccine candidates and investigate their safety, efficacy, immunogenicity, unwanted events, and limitations. The review was undertaken by searching online databases, i.e., Google Scholar, PubMed, and ScienceDirect, with finally 59 studies selected. Our findings showed several types of vaccine candidates with different strategies against SARS-CoV-2, including inactivated, mRNA-based, recombinant, and nanoparticle-based vaccines, are being developed and launched. We have compared these vaccines in terms of their efficacy, side effects, and seroconversion based on data reported in the literature. We found mRNA vaccines appeared to have better efficacy, and inactivated ones had fewer side effects and similar seroconversion in all types of vaccines. Overall, global variant surveillance and systematic tweaking of vaccines, coupled with the evaluation and administering vaccines with the same or different technology in successive doses along with homologous and heterologous prime-booster strategy, have become essential to impede the pandemic. Their effectiveness appreciably outweighs any concerns with any adverse events.

4.
Expert Rev Vaccines ; 20(12): 1651-1660, 2021 12.
Article in English | MEDLINE | ID: covidwho-1402224

ABSTRACT

BACKGROUND: Vaccination with the Oxford-AstraZeneca COVID-19 vaccine (AZD1222) initially started in the UK and quickly implemented around the Globe, including Bangladesh. Up to date, more than nine million doses administrated to the Bangladeshi public. METHOD: Herein, we studied the antibody response to the first dose of AZD1222 in 86 Bangladeshi individuals using in-house ELISA kits. Study subjects were categorized into two groups, convalescent and uninfected, based on prior infection history and SARS-CoV-2 nucleocapsid-IgG profiles. RESULTS: All the convalescent individuals presented elevated spike-1-IgG compared to 90% of uninfected ones after the first dose. Day >28 post-vaccination, the convalescent group showed six times higher antibody titer than the uninfected ones. The most elevated antibody titers for the former and later group were found at Day 14 and Days >28 post-vaccination, respectively. The spike-1-IgA titer showed a similar pattern as spike-1-IgG, although in a low-titer. In contrast, the IgM titer did not show any significant change in either group. CONCLUSION: High antibody titer in the convalescent group, signify the importance of the first dose among the uninfected group. This study advocates the integration of antibody tests in vaccination programs in the healthcare system for maximizing benefit.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19 Vaccines/immunology , COVID-19 , Bangladesh , ChAdOx1 nCoV-19 , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood
5.
Expert Rev Anti Infect Ther ; 20(3): 473-481, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1390329

ABSTRACT

BACKGROUND: Rapid increase in COVID-19 suspected cases has rendered disease diagnosis challenging, mainly depending upon RT-qPCR. Reliable, rapid, and cost-effective diagnostic assays that complement RT-qPCR should be introduced after thoroughly evaluating their performance upon various disease phases, viral load, and sample storage conditions. OBJECTIVE: We investigated the correlation of cycle threshold (Ct) value, which implies the viral load and infection phase, and the storage condition of the clinical specimen with the diagnosis of SARS-CoV-2 through our newly developed in-house rapid enzyme-linked immunosorbent assay (ELISA) system. METHOD: Naso-oropharyngeal samples of 339 COVID-19 suspected cases were collected and evaluated through RT-qPCR that were stored up to 30 days in different conditions (i.e. -80°C, -20°C and initially at 4°C followed by -80°C). The clinical specimens were evaluated with our in-house ELISA system after finalizing the assay method through checkerboard assay and minimizing the signal/noise ratio. RESULT: The ELISA system showed the highest sensitivity (92.9%) for samples with Ct ≤30 and preserving at -80°C temperature. The sensitivity reduced proportionally with increasing Ct value and preserving temperature. However, the specificity ranged between 98.3% and 100%. CONCLUSION: The results indicate the necessity of early infection phase diagnosis and lower temperature preservation of samples to perform rapid antigen ELISA tests.


Subject(s)
COVID-19 , SARS-CoV-2 , Specimen Handling , Viral Load , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
6.
J Clin Med ; 10(16)2021 Aug 08.
Article in English | MEDLINE | ID: covidwho-1348653

ABSTRACT

Early diagnosis is still as crucial as the initial stage of the COVID-19 pandemic. As RT-PCR sometimes is not feasible in developing nations or rural areas, health professionals may use a rapid antigen test (RAT) to lessen the load of diagnosis. However, the efficacy of RAT is yet to be investigated thoroughly. Hence, we tried to evaluate the overall performance of RAT in SARS-CoV-2 diagnosis. Based on our PROSPERO registered protocol (CRD42021231432), we searched online databases (i.e., PubMed, Google Scholar, Scopus, and Web of Science) and analysed overall pooled specificity and sensitivity of RAT along with study quality, publication bias, heterogeneity and more. The overall pooled specificity and sensitivity of RAT were detected as 99.4% (95% CI: 99.1-99.8; I2 = 90%) and 68.4% (95% CI: 60.8-75.9; I2 = 98%), respectively. In subgroup analyses, nasopharyngeal specimens and symptomatic patient's samples were more sensitive in RAT, while cycle threshold (Ct) values were found to have an inverse relationship with sensitivity. In the European and American populations, RAT showed better performance. Although the sensitivity of RAT is yet to be improved, it could still be an alternative in places with poor laboratory set up. Nevertheless, the negative samples of RAT can be re-tested using RT-PCR to reduce false negative results.

7.
Int J Nanomedicine ; 16: 4739-4753, 2021.
Article in English | MEDLINE | ID: covidwho-1315916

ABSTRACT

BACKGROUND: Serological tests detecting severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are widely used in seroprevalence studies and evaluating the efficacy of the vaccination program. Some of the widely used serological testing techniques are enzyme-linked immune-sorbent assay (ELISA), chemiluminescence immunoassay (CLIA), and lateral flow immunoassay (LFIA). However, these tests are plagued with low sensitivity or specificity, time-consuming, labor-intensive, and expensive. We developed a serological test implementing flow-through dot-blot assay (FT-DBA) for SARS-CoV-2 specific IgG detection, which provides enhanced sensitivity and specificity while being quick to perform and easy to use. METHODS: SARS-CoV-2 antigens were immobilized on nitrocellulose membrane to capture human IgG, which was then detected with anti-human IgG conjugated gold nanoparticle (hIgG-AuNP). A total of 181 samples were analyzed in-house. Within which 35 were further evaluated in US FDA-approved CLIA Elecsys SARS-CoV-2 assay. The positive panel consisted of RT-qPCR positive samples from patients with both <14 days and >14 days from the onset of clinical symptoms. The negative panel contained samples collected from the pre-pandemic era dengue patients and healthy donors during the pandemic. Moreover, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of FT-DBA were evaluated against RT-qPCR positive sera. However, the overall efficacies were assessed with sera that seroconverted against either nucleocapsid (NCP) or receptor-binding domain (RBD). RESULTS: In-house ELISA selected a total of 81 true seropositive and 100 seronegative samples. The sensitivity of samples with <14 days using FT-DBA was 94.7%, increasing to 100% for samples >14 days. The overall detection sensitivity and specificity were 98.8% and 98%, respectively, whereas the overall PPV and NPV were 99.6% and 99%. Moreover, comparative analysis between in-house ELISA assays and FT-DBA revealed clinical agreement of Cohen's Kappa value of 0.944. The FT-DBA showed sensitivity and specificity of 100% when compared with commercial CLIA kits. CONCLUSION: The assay can confirm past SARS-CoV-2 infection with high accuracy within 2 minutes compared to commercial CLIA or in-house ELISA. It can help track SARS-CoV-2 disease progression, population screening, and vaccination response. The ease of use of the assay without requiring any instruments while being semi-quantitative provides the avenue of its implementation in remote areas around the globe, where conventional serodiagnosis is not feasible.


Subject(s)
Gold/chemistry , Immunoblotting/methods , Immunoglobulin G/analysis , Metal Nanoparticles/chemistry , Nucleocapsid/analysis , SARS-CoV-2/isolation & purification , Adult , Antibodies, Viral/blood , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Predictive Value of Tests , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroepidemiologic Studies
8.
J Inflamm Res ; 14: 2497-2506, 2021.
Article in English | MEDLINE | ID: covidwho-1282365

ABSTRACT

BACKGROUND: Dynamics and persistence of neutralizing and non-neutralizing antibodies can give us the knowledge required for serodiagnosis, disease management, and successful vaccine design and development. The disappearance of antibodies, absence of humoral immunity activation, and sporadic reinfection cases emphasize the importance of longitudinal antibody dynamics against variable structural antigens. METHODS: In this study, twenty-five healthy subjects working in a SARS-COV-2 serodiagnostic assay development project were enrolled, and their sign and symptoms were followed up to six months. Three subjects showed COVID-19-like symptoms, and three subjects' antibody dynamics were followed over 120 days by analyzing 516 samples. We have developed 12 different types of in-house ELISAs to observe the kinetics of IgG, IgM, and IgA against four SARS-CoV-2 proteins, namely nucleocapsid, RBD, S1, and whole spike (S1+S2). For the development of these assays, 30-104 pre-pandemic samples were taken as negative controls and 83 RT-qPCR positive samples as positive ones. RESULTS: All three subjects presented COVID-19-like symptoms twice, with mild symptoms in the first episode were severe in the second, and RT-qPCR confirmed the latter. The initial episode did not culminate with any significant antibody development, while a multifold increase in IgG antibodies characterized the second episode. Interestingly, IgG antibody development concurrent with IgM and IgA and persisted, whereas the latter two weans off rather quickly if appeared. CONCLUSION: Antibody kinetics observed in this study can provide a pathway to the successful development of sero-diagnostics and epidemiologists to predict the fate of vaccination currently in place.

9.
Infect Drug Resist ; 14: 1049-1082, 2021.
Article in English | MEDLINE | ID: covidwho-1150612

ABSTRACT

Recent severe acute respiratory syndrome 2 (SARS-CoV-2) known as COVID-19, presents a deadly challenge to the global healthcare system of developing and developed countries, exposing the limitations of health facilities preparedness for emerging infectious disease pandemic. Opportune detection, confinement, and early treatment of infected cases present the first step in combating COVID-19. In this review, we elaborate on various COVID-19 diagnostic tools that are available or under investigation. Consequently, cell culture, followed by an indirect fluorescent antibody, is one of the most accurate methods for detecting SARS-CoV-2 infection. However, restrictions imposed by the regulatory authorities prevented its general use and implementation. Diagnosis via radiologic imaging and reverse transcriptase PCR assay is frequently employed, considered as standard procedures, whereas isothermal amplification methods are currently on the verge of clinical introduction. Notably, techniques such as CRISPR-Cas and microfluidics have added new dimensions to the SARS-CoV-2 diagnosis. Furthermore, commonly used immunoassays such as enzyme-linked immunosorbent assay (ELISA), lateral flow immunoassay (LFIA), neutralization assay, and the chemiluminescent assay can also be used for early detection and surveillance of SARS-CoV-2 infection. Finally, advancement in the next generation sequencing (NGS) and metagenomic analysis are smoothing the viral detection further in this global challenge.

10.
Microbiol Resour Announc ; 10(10)2021 Mar 11.
Article in English | MEDLINE | ID: covidwho-1133132

ABSTRACT

Here, we report the coding-complete genome sequences of nine clinical severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and their mutations. The samples were collected from nine Bangladeshi coronavirus disease 2019 (COVID-19) patients. We have identified the E484K escape mutation and the S359T mutation within the spike protein coding region of the sequenced genomes.

11.
PLoS One ; 16(2): e0246346, 2021.
Article in English | MEDLINE | ID: covidwho-1059627

ABSTRACT

BACKGROUND: In the ongoing pandemic situation of COVID-19, serological tests can complement the molecular diagnostic methods, and can be one of the important tools of sero-surveillance and vaccine evaluation. AIM: To develop and evaluate a rapid SARS-CoV-2 specific ELISA for detection of anti-SARS-CoV2 IgG from patients' biological samples. METHODS: In order to develop this ELISA, three panels of samples (n = 184) have been used: panel 1 (n = 19) and panel 2 (n = 60) were collected from RT-PCR positive patients within 14 and after 14 days of onset of clinical symptoms, respectively; whereas panel 3 consisted of negative samples (n = 105) collected either from healthy donors or pre-pandemic dengue patients. As a capturing agent full-length SARS-CoV2 specific recombinant nucleocapsid was immobilized. Commercial SARS-CoV2 IgG kit based on chemiluminescent assay was used for the selection of samples and optimization of the assay. The threshold cut-off point, inter-assay and intra-assay variations were determined. RESULTS: The incubation/reaction time was set at a total of 30 minutes with the sensitivity of 84% (95% confidence interval, CI, 60.4%, 96.6%) and 98% (95% CI, 91.1%, 100.0%), for panel 1 and 2, respectively; with overall 94.9% sensitivity (95% CI 87.5%, 98.6%). Moreover, the clinical specificity was 97.1% (95% CI, 91.9%, 99.4%) with no cross reaction with dengue samples. The overall positive and negative predictive values are 96.2% (95% CI 89.2%, 99.2%) and 96.2% (95% CI, 90.6% 99.0%), respectively. In-house ELISA demonstrated 100% positive and negative percent agreement with Elecsys Anti-SARS-CoV-2, with Cohen's kappa value of 1.00 (very strong agreement), while comparing 13 positive and 17 negative confirmed cases. CONCLUSION: The assay is rapid and can be applied as one of the early and retrospective sero-monitoring tools in all over the affected areas.


Subject(s)
Antibodies, Viral/analysis , Coronavirus Nucleocapsid Proteins/analysis , Enzyme-Linked Immunosorbent Assay/methods , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , COVID-19/virology , Enzyme-Linked Immunosorbent Assay/instrumentation , Humans , Immunoglobulin G/analysis , Phosphoproteins/analysis , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL